Part Number Hot Search : 
AC220 R6050LF C123J TL502 BT829A BA1039 A1020 158X393K
Product Description
Full Text Search
 

To Download CXA1700AQAR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? e94x25-te sony reserves the right to change products and specifications without prior notice. this information does not convey any license by any implication or otherwise under any patents or other right. application circuits shown, if any, are typical examples illustrating the operation of the devices. sony cannot assume responsibility for any problems arising out of the use of these circuits. structure bipolar silicon monolithic ic absolute maximum ratings (ta=25?) supply voltage v cc 7v operating temperature topr ?0 to +75 ? storage temperature tstg ?5 to +150 ? allowable power dissipation (when mounted on board) p d cxa1700aq 1050 mw cxa1700ar 1010 mw operating condition supply voltage v cc 4.75 +0.5 v ?.25 description the cxa1700aq/ar is an ic designed for 8mm vcr y/c main signal processing for consumer use. equipped with many built-in filters, the cxa1700aq/ar is a one-chip main signal processing system that greatly reduces the number of external components. features built-in auto-adjusting filters supports simple hi-8 video. supports camera recording. supports power saving mode. 140mw for composite signal input 250mw for separate signal input supports electronic volume (evr) control. supports bus line. supports ntsc/pal. function 2-input input select, video agc, dds (y signal superimposition), synchronous separation, 75 video out drive, y/c mixing, y/c separation comb filter, y/c cross talk elimination, playback chroma feedback comb, y dropout compensation, yd playback switching, y signal h correlation detection, y pre-emphasis/de-emphasis, white/dark clipping, clipping compensation, mod/demod, hhs/hhs cancel, acc, chroma emphasis/de-emphasis, burst emphasis/de- emphasis, xo/vxo, apc, afc, apc id, afc id, burst id, ack, apc compensation, hhk, pi/ps, frequency conversion system, pb c bpf, rec c lpf, pb c lpf, carrier bpf, 4.1v regulator luminance and color signal processing for 8mm vcr cxa1700aq cxa1700ar 64 pin qfp (plastic) 64 pin lqfp (plastic) cxa1700aq/ar
? cxa1700aq/ar block diagram and pin configuration (cxa1700aq) a a a a a a a a a a a a a s rec +ack rec aa aa aa aa a a a a a a a a a a a aaaaaaaaa aaaaaaaaa a a a bu s decoder hhk afc det afc id apc id 1/8 apc det ac k bid det ac k cont ac k bid ff f o au to car conv 1/n car bpf vxo xo vc o bf c xa1700aq sw p car. cont dev. cont smear . c on t hhs lpf demod lim lim mod syn c sep clamp clamp clamp clamp vid eo agc agc det vd /h d in ser t y mu te dds aaaaaa aaaaaa aaaaaa aaaaaa aaaaaa aaaaaa aaaaaa aaaaaa aaaaaa aaaaaa aaaaaa aaaaaa aaaaaa aaaaaa aaaaaa aaaaaa aaaaaa aaaaaa aaaaaa aaaaaa aaaaaa aaaaaa aaaaaa doc trap vc a 1 c l amp 1 syn c att att bpf att lim trap eq eq f sc trap vc a 2 c l amp 2 c l amp 3 s harpness hpf y corre det noise canceller w/d clip smear c omp y emph y d e emph clamp hard clip hhs cancel sw p clip comp pi ps rec c lpf rec conv burst emph burst d eemph croma emph ac c amp car in v pb c lpf pb conv pb c bpf ac c cont ac c det croma d eemph sw p ac k sw sw p ac k sw c mute insel agc off on pb s rec+pb rec test2 rec test2 test1 rec pb rec pb cam rec test1 rec pb test1 rec pb rec pb c sel rec pb rec pb s rec pb edit pb ack no corr s rec w pb pb w pb dop w pb yd pb pb yd pb pb rec rec w pb pb rec shp throu e pb+rec corr re c (s +443+e dit+no corr) c emph cont main emph out main emph tc sub emph tc emph in nc tc in demod out rec c out comp tc deemph in vg1 c trap lim c y comb out comb adj agc tc3 nc clamp tc3 dl out2 clamp tc2 dl out1 agc tc2 dl in1 comp sync v cc dds/ mask wdc v in2 agc tc1 v in1 y in rec l/ jvd afc fl ext c in dc fb i ref gnd v reg x tal out cam fsc shp fsc out bf vco c out c in x tal in aaaaaa aa a a a a a a aa aaa a a aa aa a aa a a a a a a a a a a a a a a a a a a a a a aaaaa aa aa a a a a a a a a a a a aaaaaaa a a a a a a a a a a a a a a a + a a a a a a a a a a a a a a a a a a a a a a a aaaa a a a a a a a a a a a a aaa aaaaaaaa aaaaaaaa a a a a a a a a aaaaa a a a a aa aa aa a a a a aaaaaa a a a a aaaaaa a a a 19 18 17 16 15 14 13 12 11 10 60 61 62 63 64 54 55 56 57 58 59 52 53 46 47 48 49 50 51 40 41 42 43 44 45 33 34 35 36 37 38 39 32 31 30 29 28 27 26 25 24 23 22 21 20 a a a a a a a aaa aa s rec +ack rec a a 7 9 8 6 5 4 3 2 1 clamp tc1 y out v out gnd video out inv in rf/v v cc y rf out y rf in smear cont dev cont carr cont pb c in swp cs si ck apc fl d. o. pulse rf gnd + + ++ + ++ + + + ++ + + 90 sh ift
? cxa1700aq/ar block diagram and pin configuration (cxa1700ar) a a a croma emph a a s rec +ack rec aaaaaa aaaaaa aaaaaa aa aa aa aa aa aa aa aa aaaaaaaaaaa aaaaaaaaaaa a a bu s decoder hhk afc det afc id apc id 1/8 apc det ac k bid det ac k cont ac k bid ff f o au to car conv 1/n car bpf vxo xo vc o bf c xa1700ar sw p car. cont dev. cont smear . c on t hhs lpf demod lim lim mod syn c sep clamp clamp clamp clamp vid eo agc agc det vd /h d in ser t y mu te dds aaaaaaa aaaaaaa aaaaaaa aaaaaaa aaaaaaa aaaaaaa aaaaaaa aaaaaaa aaaaaaa aaaaaaa aaaaaaa aaaaaaa aaaaaaa aaaaaaa aaaaaaa aaaaaaa doc trap vc a 1 c l amp 1 syn c att att bpf att lim trap eq eq f sc trap vc a 2 c l amp 2 c l amp 3 s harpness hpf y corre det noise canceller w/d clip smear c omp y emph y d e emph clamp hard clip hhs cancel sw p clip comp pi ps rec c lpf rec conv burst emph burst d eemph ac c amp car in v pb c lpf pb conv pb c bpf ac c det croma d eemph sw p ac k sw sw p ac k sw c mute a a a insel agc off on pb s rec+pb rec test2 rec test2 test1 rec pb cam rec test1 rec pb test1 rec pb rec pb c sel rec pb rec pb pb edit pb ack no corr s rec w pb pb w pb dop w pb yd pb pb yd pb pb rec rec w pb pb rec shp throu e pb+rec corr re c (s +443+e dit+no corr) c emph cont main emph out main emph tc sub emph tc emph in nc tc in demod out rec c out comp tc deemph in vg1 c trap lim c y comb out comb adj agc tc3 nc clamp tc3 dl out2 clamp tc2 dl out1 agc tc2 dl in1 comp sync v cc dds/ mask wdc v in2 agc tc1 v in1 y in rec l/ jvd ck d. o. pulse apc fl afc fl ext c in dc fb i ref gnd x tal in v reg x tal out cam fsc shp fsc out bf vco c out c in clamp tc1 y out v out gnd video out inv in rf/v v cc y rf out y rf in smear cont dev cont carr cont pb c in swp cs si rf gnd ac c cont rec pb s rec + a a a aa aa aaaaaaa aaaaaaa a a a a a a a a a a aaaa a a a a a a a a a a a a a a a aaaaaaaaa a a a a a a a a a a a a a aaa a a a a a a a a a a aaaaa a a aa a a a a aa a a a a a a a aaaaaaa aa a aaaaaa a a a a a a a aaaaaaaaa a a a 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 64 63 62 61 60 59 58 57 56 55 54 53 52 51 49 50 aaaaaaaa a a a aa s rec +ack rec a a 9 8 7 6 5 4 3 2 1 + + + ++ + + + + ++ ++ + 90 sh ift
? cxa1700aq/ar pin description pin symbol pin voltage equivalent circuit description no. dc ac chroma emphasis f 0 (center frequency) adjustment. (refer to item 7 on description of operation.) main emphasis and main de- emphasis time constant. when recording, the emphasized y signal prior to white/dark clipping is output. main emphasis and main de- emphasis time constant. apply an external constant between this pin and pin 2, as shown below. hpf time constant that forms sub emphasis and sub de- emphasis. add resistance between this pin and pin 11. during recording, y emphasis input. during playback, this signal to the noise canceler is input. performs diode clamping (sync tip clamping), with the clamp capacitance attached externally. 25a 150 1 1ma 150 2 4k 3 100 100 4 100 150 5 1 c emph cont 2 main emph out 3 main emph tc 4 sub emph tc 5 emph in control range: 1.8v to 3.8v 2.05v (sync tip level) 2.05v (when time constant connected) 2.05v (when time constant connected) 2.05v (sync tip level) 250mvp-p output 500mvp-p input 2 3 4 11 vg1
? cxa1700aq/ar pin symbol pin voltage equivalent circuit description no. dc ac connects external time constant for hpf of noise canceler. (refer to item 11 on description of operation.) y signal output that has been fm demodulated and has passed though the demod lpf. during recording, a chroma signal that has been burst emphasized, chroma emphasized, and frequency converted is output. during ack, the output dc goes to 0v. during recording, if test1 is high the burst emphasized signal is output. connects external time constant for hpf of the white/dark clipping compensation circuit during playback. input for de-emphasis circuit during playback. the signal is input to the de-emphasis circuit through the clipping compensation circuit. 6 150 1ma 63 7 sat 200 8 4k 150 9 5k 150 10 2.05v 6 nctc in 7 demod out 8 rec c out 9 comp tc 10 deemph in 2.05v (when time constant connected) 1.6v 2.0v 2.05v (when time constant connected) 2.05 v (center dc) 140mvp-p output during standard playback low- frequency conversion chroma signal 300mvp-p output 180mvp-p input during playback vg1 9 11 input 6 11 vg1
? cxa1700aq/ar pin symbol pin voltage equivalent circuit description no. dc ac internal reference voltage source. (can not be used as external bias for pins other than 4, 6, and 9.) outputs chroma signal that has passed through pb c bpf and chroma feedback comb filter subtracter after frequency conversion during playback. connects decoupling capacitor for limiter of the playback y comb block. outputs y signal processed by comb filter. during playback, the signal is output through the sharpness circuit. if mode e is set high, the signal is output without passing through the f sc trap; if mode shp thru is set high, the signal is output without passing through the sharp -ness circuit. vca gain adjustment in the comb filter block. (refer to adjustment procedure.) 150 3k 11 2.5k 150 300 12 0.6ma 270 150 13 150 10k 10k 1.4ma 150 14 150 15 11 vg1 12 c trap 13 lim c 14 y comb out 15 comb adj 2.05v 2.05v 2.4v 1.2v (sync tip level) control range: 1.8v to vcc chroma signal 300mvp-p output during playback y signal 500mvp-p output
? cxa1700aq/ar pin symbol pin voltage equivalent circuit description no. dc ac time constant for vca circuit in comb filter block. a dc limiter circuit with an upper limit of 4.0v and a lower limit of 2.2v is built in. not connected. normally, connect to gnd. time constant for feedback clamp circuit in the comb filter block. inputs ccd dl (delay line) output signal to the vca circuit. time constant for feedback clamp circuit in the comb filter block. 16 150 150 150 150 18 40k 150 2.1v 19 150 150 20 16 agc tc3 17 nc 18 clamp tc3 19 dl out2 20 clamp tc2 2.2v to 4.0v 2.1v (center dc) video 500mvp-p input
? cxa1700aq/ar pin symbol pin voltage equivalent circuit description no. dc ac inputs ccd dl (delay line) output signal to vca circuit. time constant for vca circuit in the comb filter block. a dc limiter circuit with an upper limit of 4.0v and a lower limit of 2.2v is built in. output for inputting a signal to the ccd dl (delay line). normally, y+c signal is output. composite sync signal output. no output if mode sync sep off is set high. main block power supply. 40k 150 2.1v 21 150 150 22 1ma 150 23 150 1h 2.5v 0 270 24 20k 20k 5k 270 50k 21 dl out1 22 agc tc2 23 dl in1 24 comp sync 25 v cc 2.1v (center dc) 2.2v to 4.0v 2.2v high : 2.5v, low : 0v output v cc =4.75v video 500mvp-p input video 500mvp-p output
? cxa1700aq/ar pin symbol pin voltage equivalent circuit description no. dc ac input for vow (character level) signal, vob (character background) timing pulse of dds (date display system) and masking timing pulse. mask : v th = 1.1v dds : v th = 2.0v by varying the input dc for dds over a range of 2.3v to 3.0v, the character level can be changed. (refer to item 4 on description of operation.) determines the white/dark clipping levels. when open, the standard white clipping level is 235%, and the dark clipping level is 95%. (mode dc1, 2 = low, high) (refer to item 5 on description of operation.) video signal input. performs diode clamping, with the clamp capacitance externally connected. if the mode mute is set high, the charge of the clamp capacitance is discharged. time constant for the video agc circuit in the i/o block. during mute and playback, the charge of the external capacitance is discharged. 150 45k 26 15k 2.0v 1.1v 16k 150 2.05v 10k 4.1v 30k 27 mute on 270 28 100na 4a 100 1k 29 47k mute on pb on 26 dds/mask 27 wdc 28 v in2 29 agc tc1 2.0v (when open) (mask) 1.5v (dds) 2.3 to 3.0v 2.6v (when open) 2.05v (sync tip level) video 500mvp-p input
?0 cxa1700aq/ar pin symbol pin voltage equivalent circuit description no. dc ac video signal input. performs diode clamping, with the clamp capacitance externally connected. if the mode mute is set high, the charge of the clamp capacitance is discharged. level adjustment during recording. the adjustment range is 1.3v to 2.6v. during playback, serves as input for jog (variable speed playback) vd pulse and hd pulse. v th = 2.7v (refer to item 3 on description of operation.) video signal input for video out circuit. performs diode clamping, with the clamp capacitance externally connected. time constant for feedback clamp circuit in i/o block. i/o block signal output. 270 100na 4a mute on 30 150 31 270 32 100na 100 33 100 34 3k 150 3.4k 27k 2.05v 30 v in1 31 rec l/jvd 32 y in 33 clamp tc1 34 y out 2.05v (sync tip level) 1.9v (typical value during rec level adjustment) 1.6v (sync tip level) 1.8v (sync tip level) video 500mvp-p input video 500mvp-p input video 500mvp-p output
?1 cxa1700aq/ar pin symbol pin voltage equivalent circuit description no. dc ac gnd for the video out circuit. video out 75 driver output. inverted input for v sag compensation for the video out 75 driver. video out circuit and rf system block power supply. during recording, fm- modulated y signal output. if mode test2 is set high during recording, the y signal after white/dark clipping is output. rf block gnd. during playback, inputs y-rf signal to fm modulation circuit. during recording, adjustment for high luminance smear compensation. 100 35 36 37 38 2.5ma 63 39 63 45k 150 41 10p 150 42 35 vout gnd 36 video out 37 inv in 38 rf/v v cc 39 y rf out 40 rf gnd 41 y rf in 42 smear cont 0v 1.6v (sync tip level) 1.5v v cc =4.75v 2.1v 0v control range: 1.8v to vcc video 2.0vp-p output video 1.0vp-p input y fm output 500mvp-p yfm 200mvp-p input
?2 cxa1700aq/ar pin symbol pin voltage equivalent circuit description no. dc ac during recording, adjustment for deviation of y-fm modulation. during recording, adjustment for carrier of y-fm modulation. during playback, chroma rf signal input. pb c lpf is built in, so that a signal with the afm and atf components (y rf + c rf) eliminated can be input. rf swp (switching pulse) and hchg (head change) pulse input. half h shift, hhs cancel, acc channel hold, and pi/ps switching operate at v th = 0.7v. yd playback during playback operates at v th = 2.05v (same as when mode yd is high). input to bus decoder. cs is used as chip select, and data is latched at rising edge. ck is the clock input. use a clock frequency fck of less than 1.3mhz. si is used as a serial data input. 150 43 150 44 50k 150 3.1v 45 150 46 48 49 150 2.05v 47 43 dev cont 44 carr cont 45 pb c in 46 swp 47 cs 48 si 49 ck control range: 1.8v to vcc control range: 1.8v to vcc 3.1v (during playback) high : vcc, low : 0v input (pb y rf) + (pb c rf 100mvp-p) input
?3 cxa1700aq/ar pin symbol pin voltage equivalent circuit description no. dc ac drop out pulse input. v th = 2.05v if the drop out pulse is input, the signal prior to 1h is output for the y system and the apc and acc system errors are held for the c system. connects an apc external filter. connects an afc external filter. during recording, the chroma signal is input. when the typical level is 75% color bar input, the input signal is 314mvp-p. connects a dc feedback external filter for a non- adjustment vco. 150 2.05v 50 100k 200 51 during playback 200 52 200 50k 150 2.6v 53 200 54 200 200 50 d.o.pulse 51 apc fl 52 afc fl 53 ext c in 54 dcfb high : 3.1v, low : 0v input 2.25v (typ.) during lock 2.25v (typ.) during lock 2.6v 2.25v (typ.) during lock (chroma signal 314mvp-p input
?4 cxa1700aq/ar pin symbol pin voltage equivalent circuit description no. dc ac external reference current source. connect external resistance of 18k to gnd. be careful concerning interference pin. main block gnd. crystal oscillation reference input. be careful concerning interference pin and the floating capacitance. 4.1v regulator output. crystal oscillation reference output. connects the crystal between this pin and pin 57. subcarrier input during camera recording. 200mvp-p(min). sharpness control during playback. 55 20k during playback 4k 57 2v 270 270 2v 58 100 15k 59 310 540a 200 60k 60 9p 55 i ref 56 gnd 57 xtal in 58 vreg 59 xtal out 60 cam fsc shp 1.8v (when resistance connected) 0v 2.0v 4.1v 3.1v sharpness control range: 1.8v to v cc 260mvp-p (ntsc) during playback 340mvp-p (ntsc) during playback
?5 cxa1700aq/ar pin symbol pin voltage equivalent circuit description no. dc ac subcarrier output. this subcarrier is used for the ccd delay line clock frequency. burst flag and vco out output for testing. when using this pin, connect 3.3k resistance to gnd. serves as vco output when mode test2 is high. during recording, outputs chroma signal after y/c separation or for chroma signal input from pin 53. during playback, the playback chroma signal is output. during ack, the output dc becomes 0v. inputs chroma signal to y/c mix circuit in the i/o block. during component signal recording or playback, this signal is y/c mixed and is then output from v out. 0.5ma 200 61 200 46k 62 9p 54k sat 200 63 2k 100 28k 2.05v 64 61 fsc out 62 bf vco 63 c out 64 c in ntsc 600mvp-p pal 450mvp-p 550mvp-p during vco output chroma signal 314mvp-p output (during recording) chroma signal 314mvp-p input 2.2v during bf output high : 1.8v, low : 0v low during bf interval 2.0v 2.05v
?6 cxa1700aq/ar input conditions control dc ratings no. 1 2 3 4 5 6 7 8 9 10 11 12 13 measurement item composite signal input current consumption during recording separate signal input current consumption during recording composite signal input current consumption in power saving mode separate signal input current consumption in power saving mode current consumption during playback internal reference voltage source 1 internal reference voltage source 1 (v cc ? internal reference voltage source 1 (v cc +) internal reference voltage source 2 reference current source sync agc input low level sync agc input high level peak agc symbol i rec1 i rec2 i ps1 i ps2 i pb v reg v reg v reg+ v g1 i ref v agcl v agch v agcp e f g sg30 amplitude frequency voltage sw30 a c d e f a a a a a b i 1 i 1 i 1 i 1 i 1 p58 p58 p58 p11 p55 p34 measurement method v cc =4.75v, voltage at pin 58 :v reg v cc =4.5v, voltage at pin 58 :v reg1 v reg ?v reg1 ? reg v cc =5.25v, voltage at pin 58 :v reg2 v reg +=v reg2 ? reg voltage at pin 11 iref=(voltage at pin 55 /18k measures the output sync level measures the output amplitude level min. 63 55 20 35 68 3.90 ?2 1.95 94 typ. 88 78 30 53 94 4.13 ? +1 2.08 100 143 143 550 max. 113 100 40 70 120 4.36 +12 2.21 106 unit ma ma ma ma ma v mv mv v ? mv mv mv electrical characteristics v cc = 4.75v, ta = 25?, see electrical characteristics test circuit and bus decoder mode condition table. * start measurements after adjustments in accordance with the precautions concerning measurements. ( ) video agc signal signal source voltage source sw mode measu- set to condi- rement on tions point
?7 cxa1700aq/ar input conditions control dc ratings no. 14 15 16 17 18 19 20 21 22 23 24 25 measurement item for video agc off for video agc on 300khz gain for trap off 300khz gain for trap on fsc trap 3.58mhz gain hard clip amount white clip amount dark clip amount ?db 500khz ?db 2mhz ?0db 2mhz ?0db 2mhz symbol f io1 f io2 g yc1 g yc2 g yc3 k h.c k w.c k d.c f e11 f e12 f e13 f e14 d d b c b a sg30 sg30 sg5-1 sg5-1 sg5-2 amplitude sine wave 357mvp-p sine wave 357mvp-p 500mvp-p 647mvp-p 500mvp-p ?db (354mvp-p) ?0db (158mvp-p) ?0db (50mvp-p) frequency 300khz /5mhz 300khz 300khz 3.58mhz 10khz/ 500khz 10khz/ 2mhz voltage sw30 sw30 sw5-1 sw5-1 sw5-1 sw5-3 a b g c h h h p34 p14 p39 p39 p39 measurement method level ratio between 300khz sine wave and 5mhz sine wave i/o gain of 300khz sine wave (refer to output waveform measurement nos. 14 and 15.) level ratio between 300khz sine wave and 3.58mhz sine wave (refer to output waveform measurement nos. 14 and 15.) level ratio of this signal output with 500mvp-p input and with 647mvp-p input measures level ratio of each output frequency component. (these emphasis characteristics include white/ dark clipping.) min. ?.5 ?.5 10.7 11.8 15.0 19.5 typ. 0 0 ?.3 ?.6 ?3 115 235 95 max. 1.5 1.5 ?4 11.7 15.8 19.0 25.5 unit db db db db db % % % db db db db pre-emphasis standard frequency characteristics i/o frequency characteristics y comb out frequency characteristics x y z k w.c y x = 100 k d. c z x = 100 signal signal source voltage source sw mode measu- set to condi- rement on tions point v (500khz) v (10khz) v (2mhz) v (10khz)
?8 cxa1700aq/ar input conditions control dc ratings no. 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 measurement item output level secondary distortion carrier control minimum frequency (l) carrier control maximum frequency (l) deviation control minimum frequency (l) deviation control maximum frequency (l) linearity (l) pb y comb filter att level hhs canceler edit min max symbol v mod d mod cl min cl max dl min dl max l modl k 0 k 1 k 2 k 3 v dehhs f shp0 f shp1 f shp2 a a sg3 sg3 amplitude 30mvp-p 175mvp-p frequency 300khz 300khz/ 2.15mhz v44 v44 v5-1 v43 v5-1 v43 v5-1 v60 v60 voltage 1.8v 4.75v v g1 +0.5v 1.8v v g1 +0.5v 4.75v v g1 v g1 +0.25v v g1 +0.5v 1.8v 4.75v sw5-2 sw5-2 sw3-1 sw4 sw46-1 on/off sw3-1 sw4 a a a j1 j2 j3 j4 f k f p39 p39 p14 p23 p14 measurement method signal level with 4.2mhz output ratio to secondary higher harmonic components with 4.2m output v (8.4mhz)/v (4.2mhz) measures the output frequency makes initial setting of v44, applies test 9 measurement v g1 +0.5v to v5-1 and then measures the output frequency. makes initial setting of v44, applies test 9 measurement v g1 . v g1 +0.25v and v g1 +0.5v to v5-1 and then calculates the following equation using the output frequency. ?v g1 +0.5v)(v g1 +0.25v) ?v g1 +0.25v)(v g1 ) measures the i/o gain under all mode conditions. dc level difference at p23 (pin 23 dl in1) when sw46-1 is turned on and off measures the level ratio of p14 (pin 14 y comb out) output between 300khz input and 2.15mhz input. v (2.15mhz) v (300khz) min. 440 4.2 5.4 0.9 ?.8 ?.3 ?1 typ. 500 ?4 3 5.2 5.0 5.9 1.0 ?.8 ?.3 ?8 ?2 1.6 ?.0 ?0 7 max. 560 4.2 5.4 1.1 ?.8 ?.3 ?5 unit mvp-p db mhz mhz mhz mhz db db db db mv db db db pb sharpness frequency characteristics fm modulator signal signal source voltage source sw mode measu- set to condi- rement on tions point
?9 cxa1700aq/ar input conditions control dc ratings no. 41 42 43 44 45 46 47 48 49 50 51 52 53 measurement item nc1 ?db 1mhz ?0db 1mhz ?0db 1mhz nc2 ?0db 1mhz nc3 ?0db 1mhz nc4 ?0db 1mhz nc5 ?0db 1mhz gain (l) linearity (l) gain (e) linearity (e) carrier leak doc trap symbol f nc10 f nc11 f nc12 f nc2 f nc3 f nc4 f nc5 g demod1 l demod1 g demod2 l demod2 c ldemod g trap a a a sg5-2 sg41 sg19 amplitude ?db (354mvp-p) ?0db (50mvp-p) ?0db (15.8mvp-p) 200mvp-p 300mvp-p frequency 10khz/ 1mhz 3mhz 5mhz 7mhz 4mhz 7mhz 10mhz 4.2m 300khz/ 3.58mhz voltage sw5-1 sw5-3 sw6 sw24-1 sw33 sw41 sw19 sw20 sw22 sw50 l1 l2 l3 l4 l5 f m f t p34 p7 p17 p23 measurement method measures the level ratio of each output frequency component. v (1mhz) v (10khz) calculates the v (7m)? (3m) equations at right 7-3 with the output dc v (7m)? (5m) at p7 (pin 7 v (5m)? (3m) demod out) for v (10m)? (4m) each input 10? frequency v (10m)? (7m) v (7m)? (4m) ratio of 4.2m component of output to input level ratio of p23 (pin 23 dl in1) between 300khz input and 3.58mhz input v (3.58mhz) v (300khz) min. 90 0.9 50 0.9 typ. 0 ?.9 ?.3 ?.7 ?.0 ?.5 ?.6 115 0.96 65 1.02 ?0 ?8 max. 140 1.1 80 1.1 ?4 unit db db db db db db db mv mhz mv mhz db db noise canceler frequency characteristics fm demodulation signal signal source voltage source sw mode measu- set to condi- rement on tions point
?0 cxa1700aq/ar input conditions control dc ratings no. 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 measurement item 300khz gain 2.5mhz frequency characteristic 6.12mhz frequency characteristic 300khz gain 4.0mhz frequency characteristic 7.8mhz frequency characteristic vob vow jog vd high level low level pulse width delay amplifier gain 5mhz frequency characteristic symbol glpf11 flpf12 flpf13 glpf21 flpf22 flpf23 ? v vob ? v vow ? j ogvd v cs-h v cs-l w cs d cs g buff f buff h d sg41 sg26 sg30 sg30 sg31 sg30 sg32 amplitude 200mvp-p sine wave 357mvp-p frequency 300khz 2.5mhz 6.12mhz 300khz 4.0mhz 7.8mhz 300khz 300khz /5mhz voltage sw41 sw26 sw30 sw30 sw31 sw30 sw32 f m b b a p7 p34 p24 p24 p34 p36 measurement method (300khz i/o gain) (compensation item g c1 ) v (2.5mhz) v (300khz) v (6.12mhz) v (300khz) (300khz i/o gain) (compensation item g c2 ) v (4.0mhz) v (300khz) v (7.8mhz) v (300khz) refer to detailed explanation of measurement method (2). p24 ( 24 comp sync) p34 ( 34 yout) measures the i/o gain for a 300khz sine wave overlapping the y signal. measures level ratio for a 300khz sine wave and 5mhz sine wave overlapping the y signal. min. ?.5 ?.5 ?.5 ?.5 ?0 ?5 2.3 0.1 5.5 typ. 0 0 ?8 0 1.0 ?6 15 340 10 2.5 0.03 4.5 0.35 6.0 0 max. 1.5 1.5 ?2 1.5 2.0 ?0 40 35 2.7 0.2 0.7 6.5 unit db db db db db db mv mv mv v v ?ec ?ec db db demodulation lpf frequency characteristics standard mode refer to detailed explanation (1). refer to detailed explanation (2). hi-8 mode dds (date display system) composite sync pulse video buffer calculates the equations at left using the output level of p7 (pin 7 demod out) for each input frequency. refer to detailed explanation of measurement method (1) for compensation values gc1 and gc2. the amplitude frequency indicated for the input conditions is the value of sg54 in sg41. measures the dc level difference with the pedestal level. measures the dc level difference with the sync tip level. w cs d cs gnd v cs-l v cs-h signal signal source voltage source sw mode measu- set to condi- rement on tions point
?1 cxa1700aq/ar input conditions control dc ratings no. 69 70 71 72 73 74 75 76 77 78 79 80 81 82 measurement item c out level 1 (rec) c out level 2 (s?ec) gain maximum gain minimum gain burst emphasis level 0db ?c 0db +500khz 0db +500khz ?0db ?c ?0db +500khz ?0db ack off ack on symbol g cout1 g cout2 g cenacc g maxacc g minacc be v ce1 f ce11 f ce12 v ce2 f ce21 f ce22 v ack off v ack on d a a a i a sg30 sg53 sg53 sg53 sg53 sg53 amplitude sine wave 314mvp-p 314mvp-p 143mvp-p 10mvp-p 363mvp-p 143mvp-p vc= 314mvp-p vc= 99.3mvp-p 20mvp-p 2mvp-p frequency 3.58mhz 3.58mhz 3.58mhz 3.58mhz 3.58mhz 4.08mhz 3.08mhz 3.58mhz 4.08mhz 3.08mhz 3.58mhz voltage sw30 sw53 sw24-1 sw24-2 sw53 sw24-1 sw24-2 sw53 sw24-1 sw24-2 sw53 sw24-1 sw24-2 sw53 n o p p p q p63 p8 p8 p8 p63 measurement method measures the i/o level ratio for 3.58mhz sine wave. measures the i/o level ratio. until measurement no. 126, input signal i from sg24. measures the level ratio between the output burst interval and the chroma interval. v ob v oc measures the output level for the input frequency of the chroma interval. v ce1 measures the ratio between v ce1 and the output level for the input frequency of the chroma interval. measures the output level for the input frequency of the chroma interval. v ce2 measures the ratio between v ce2 and the output level for the input frequency of the chroma interval. measures the output dc level. min. ?.5 ?.5 ?.3 14 5.0 200 ?.4 ?.4 60 1.4 1.4 1.7 typ. 0 ?.3 ?.3 18 ?.5 6.0 270 1.0 1.0 85 3.0 3.0 2.0 80 max. 1.5 1.5 0.7 ? 7.0 360 2.6 2.6 120 5.4 5.4 2.3 200 unit db db db db db db mvp-p db db mvp-p db db v mv acc amp c out dc v ob v oc signal signal source voltage source sw mode measu- set to condi- rement on tions point chroma emphasis characteristics
?2 cxa1700aq/ar input conditions control dc ratings no. 83 84 85 86 87 88 89 90 91 92 93 94 95 measurement item rec c rf level rec chroma band1 (?50khz) rec chroma band2 (?00khz) rec chroma band3 (+300khz) rec chroma band4 (+650khz) upper pull-in range lower pull-in range upper pull-in range lower pull-in range upper pull-in range lower pull-in range upper pull-in range lower pull-in range symbol v recc f recc1 f recc2 f recc3 f recc4 apcrn+ apcrn apcrp+ apcrp afcn+ afcn afcp+ afcp i a j i sg53 sg53 sg24 amplitude vc= 314mvp-p 143mvp-p frequency 3.58mhz 2.83mhz 3.28mhz 3.88mhz 4.23mhz 3.58mhz + ? ?z 3.58mhz ? ?z 4.43mhz +d?z 4.43mhz ? ?z 16.206khz (+3%) 15.262khz (?%) 16.094khz (+3%) 15.156khz (?%) voltage sw24-1 sw24-2 sw53 sw24-1 sw24-2 sw53 sw24-1 sw24-2 sw51 sw53 sw57 sw59 sw24-1 sw24-2 sw62 q q r s1 ? s2 s3 ? s4 p8 p61 p62 measurement method measures the output level of the chroma interval. v recc measures the ratio between v recc and the output level for the chroma interval. the output frequencies of 3.58mhz + ? ?hz are converted to 743khz ? ?hz for frequency conversion. upper input frequency pulled in within 2 seconds by the sg53 input frequency (3.58mhz+1khz). lower input frequency pulled in within 2 seconds by the sg53 input frequency (3.58mhz?khz). upper input frequency pulled in within 2 seconds by the sg53 input frequency (4.43mhz + 1khz). lower input frequency pulled in within 2 seconds by the sg53 input frequency (4.43mhz?khz). measures the output frequency one second later after switching the mode conditions. min. 210 230 200 typ. 300 ?0 ?.0 2.5 ?.0 6125979 5769126 6035156 5683594 max. 420 ?30 ?00 unit mvp-p db db db db hz hz hz hz hz hz hz hz rec apc pull-in range (ntsc) rec apc pull-in range (pal) rec afc pull-in range (ntsc) rec afc pull-in range (pal) rec c rf level signal signal source voltage source sw mode measu- set to condi- rement on tions point
?3 cxa1700aq/ar input conditions control dc ratings no. 96 97 98 99 100 101 102 103 104 105 106 107 108 measurement item pb c out level pb chroma band 1 (?50khz) pb chroma band 2 (?00khz) pb chroma band 3 (+300khz) pb chroma band 4 (+1.2mhz) gain difference between channels 1-2 gain difference between channels 1-3 gain difference between channels 1-4 high-speed acc compression ratio burst de-emphasis level frequency deviation output level secondary distortion symbol v pbco f pbc1 f pbc2 f pbc3 f pbc4 ? g ch12 ? g ch13 ? g ch14 f acc b de ? xon v xon hd 2xon n a/k o m a sg45 sg45 sg46 sg53 sg45 amplitude vc= 200mvp-p 200mvp-p 1.4vo-p 200mvp-p frequency 743khz 100khz 443khz 1043khz 1.9mhz 743khz 50hz 743khz voltage sw16 sw18 sw24-1 sw24-2 sw45 sw16 sw18 sw24-1 sw24-2 sw45 sw46-1 sw46-2 sw24-1 sw24-2 sw53 sw16 sw18 sw24-1 sw24-2 sw45 t t u t f p63 p63 p8 p63 p61 measurement method measures the output level of the chroma interval. v pbco . measures the ratio between v pbco and the output level of the chroma interval. the output frequencies of 743khz + ? ?hz are converted to 3.58mhz ? ?hz for frequency conversion. refer to detailed explanation of measurement method (3). measures the gain difference between channels. refer to detailed explanation of measurement method (4). measures the level ratio between the burst interval and the chroma interval of output. v ob v oc difference between output frequency and scn =3579545hz. ? xon = xon scn measures the output level. ratio with secondary higher harmonic component. v (7.16mhz)/v (3.58mhz) min. 130 ?.5 ?.5 ?.5 ?.5 ?0 450 typ. 200 ?.4 ?.5 ?.3 ?0 0 0 0 0.6 ?.5 600 ?5 max. 300 0.5 0.5 0.5 3.0 ?.5 50 750 ?5 unit mvp-p db db db db db db db db db hz mvp-p db pb c out level pb acc gain difference between channels xo characteristics (ntsc) v oc v ob signal signal source voltage source sw mode measu- set to condi- rement on tions point
?4 cxa1700aq/ar input conditions control dc ratings no. 109 110 111 112 113 114 115 116 117 measurement item frequency deviation output level secondary distortion upper pull-in range lower pull-in range upper pull-in range lower pull-in range delay pulse width symbol ? xop v xop hd2 xop apcn+ apcn apcp+ apcp td bf wd bf a l a l a l a l b sg45 sg24 sg45 sg24 sg45 sg24 sg45 sg24 sg5-1 amplitude 200mvp-p 200mvp-p 200mvp-p 200mvp-p frequency 765.747khz (+3%) 16.206khz (+3%) 721.141khz (?%) 15.262khz (?%) 754.395khz (+3%) 16.094khz (+3%) 710.449khz (?%) 15.156khz (?%) voltage sw57 sw59 sw16 sw18 sw24-1 sw24-2 sw45 sw62 sw16 sw18 sw24-1 sw24-2 sw45 sw51 sw57 sw59 sw62 sw5-1 sw24-1 sw24-2 sw62 f v1 ? v2 v3 ? v4 f p61 p62 p62 measurement method difference between output frequency and scp = 4433619hz. ? f xop = xop scp measures the output level. ratio with secondary higher harmonic component. v (8.86mhz)/v (4.43mhz) measures the output frequency one second later after switching the mode conditions. min. ?0 320 3.5 3.3 typ. 460 ?0 6125979 5769126 6035156 5683594 4.1 4.3 max 50 650 ?5 4.7 5.3 unit hz mvp-p db hz hz hz hz ?ec ?ec xo characteristics (pal) pb apc pull-in range (pal) burst flag pb apc pull-in range (ntsc) t dbf w dbf p24 ( 24 compsync) p62 ( 62 bfout) signal signal source voltage source sw mode measu- set to condi- rement on tions point
?5 cxa1700aq/ar electrical characteristics test circuit r17 5600 v20 2. 7v c18 10 v22 2. 8v l1 22? r5 3300 (1% ) a i 1 v cc sg 32 sg 31 sg 30 sw 32 sw 31 sw 30 c26 0. 47 v31 c25 10 c24 0. 47 r10 47k c23 10 c22 0. 47 c21 0. 01 sg 26 sw 26 c20 10 sg 24 c19 100 sw 24-2 sw 24-1 p24 p23 c17 10 c16 3. 3 c14 3. 3 c15 10 sw 22 sw 20 sg 19 v18 2. 7v sw 19 sw 16 v16 2. 8v v15 3v c13 10 p14 p11 p8 p7 c12 10 c11 0. 01 c10 10 c9 47 c8 470p r8 1k r7 1k r6 1k sw6 sg 5-2 v 5-2 2. 37v sg 5-1 sw 5-3 c6 0. 47 c7 220p sw 5-1 sw 5-2 v5-1 sw4 r4 1200 sg3 sw 3-1 sw2 c5 0. 47 r2 390 (1%) sw 3-2 r1 470 (1%) c4 150p c3 150p c2 330p c1 390p v 1 p2 c45 10 c44 0. 01 c43 1000p p58 p63 p62 p61 p55 sw 59 sw 62 sw 57 (pal) (ntsc) r19 3. 3k v60 3v c41 82p c42 0. 01 r18 18k c40 1 r16 3900 r15 6800 c38 0. 68 0. 022 c36 1 sg 53 sw 53 c39 1000p sw 51 sw 50 v50 3v c33 1 c35 6800p c34 330p ?co m sg 46 sw 46-2 sw 46-1 v46 1. 4v sw 45 sg 45 sg 41 v 44 c32 100p v 43 3v v 42 3v sw 41 c31 0. 01 c30 10 p39 p36 p34 r14 1k r12 75 r11 1k c28 220 c29 2. 2 sw 33 c27 1 v 33 1v r3 1200 (1%) c xa1700ar c37 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 42 43 44 45 46 47 48 35 36 37 38 39 40 41 33 34 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 sw 18 r13 75
?6 cxa1700aq/ar input signal signal input signal waveform signal source a b c d e f g h sg3 sg5-2 sg19 sg41 sg45 sg53 sg5-1 sg5-1 sg30 sg32 sg30 sg30 sg30 sg30 frequency f (hz) amplitude v (mvp-p) 100% white sync 0db 357mv 143mv 1.5sec 4.6sec 4.5sec = 1h 63.5sec 71.5mv sync ?db 286mv sync +6db 357mv 71.5mv 100% white sync ?db 0.4sec 4.6sec 2.2sec 210mvp-p 3.58mhz 143mv sync 0db with color burst 141% white sync 0db 504mv 143mv 50% white overlapping sine wave sync 0db frequency f (hz) 178.5mv 143mv sine wave amplitude 357mvp-p signal input signal waveform signal source i j k l m n o sg53 sg53 sg45 sg24 sg53 sg45 sg46 burst signal v b (3.58mhz/143mvp-p) chroma signal vc(fhz/vmvp-p) 90?phase shift f(hz)/v(mvp-p) 90 0 90 v in min v in max fsc/143mvp-p: 60hz, 35% am modulated 100 = 35% v in max ? in min v in max +v in min pbc rf signal chroma signal (fhz/200mvp-p) burst signal v b (743khz/200mvp-p) 10m sec 10m sec 1.4v 0v 180?phase inversion f(hz)/v(mvp-p) 180 0 180 4.7sec 1h(ntsc)63.56sec: 15.734khz 2.5v 0v
?7 cxa1700aq/ar detailed explanation of measurement method (1) demod lpf frequency characteristics measurement using the cxa1207a as a modulator, the configuration for sg41 is shown below. first, without inputting sg54, adjust v car so that the y rf out (pin 43) output frequency of the cxa1207a is 5mhz. use v caro for the v car voltage. next, apply v caro + 500mv, measure the y rf out (pin 43) output frequency fo of the cxa1207a, and then calculate the mod gain using the following equation. gmod = fo (mhz)? (mhz) 500 (mv) the compensation values are derived from gmod and from gdemod1 and gdemod2 of measurement nos. 48 and 50. standard mode compensation value : g c1 = 20log [g mod (mhz/mv) x g demod1 (mv/mhz)] hi-8 mode compensation value : g c2 = 20log [g mod (mhz/mv) x g demod2 (mv/mhz)] next, in order to set the sg41 carrier frequency, adjust v car so that the y rf out (pin 43) output of the cxa1207a in standard mode is 4.8mhz and in hi-8 mode is 6.7mhz. in the above state, measure the i/o gain for the sg54 (200mvp-p/300khz) input and p7 (pin 7 demod out), with the gain for standard mode being g lpf10 and for hi-8 mode g lpf20 . using these measured values and compensation values, the low frequency gain for demod lpf is determined using the following equations: standard mode : g lpf11 = g lpf10 - g c1 (db) hi-8 mode : g lpf21 = g lpf20 - g c2 (db) 7 41 54 43 cxa1207a rec mode sw41 yrfin lim demod lpf demod out p7 cxa1700a to be measured car 1 4700 4700 sg54 v car (sg41) yrfout fm mod
?8 cxa1700aq/ar (2) dds measurement when a pulse with the following timing is input, the output from p34 (pin 34 y out) becomes as shown below; measures each dc differential. (3) measurement of gain difference between pb acc channels the acc amplifier in the cxa1700 has a built-in 4-channel time constants, and those time constants can be switched by swp (pin 46) input. in addition, in ntsc playback chroma signal processing, pi return occurs in the swp (pin 46) input for low interval. in this measurement, the signal k, that is phase-inverted each 1h, is input to pbc in (pin 45) for the low interval of swp; the continuous wave of the signal is input for the high interval of swp. in this case, measure each channel level v 1 , v 2 , v 3 ,and v 4 of output p63 (pin 63 c out) and calculate the gain difference between channels using the following equations: ? g ch12 = v 2 v 1 ? g ch13 = v 3 v 1 ? g ch14 = v 4 v 1 p34 (pin 34 y out) output sg26 (pin 26 dds/mask i nput) sg30 (pin 30 vin1 input) 357mv 143mv 100% white y signal 3v 1.5v 0v 0v 5v d v vob d v vow d v jogv sg31 (pin 31 recl/jvd input) pedestal level reference sync tip level reference
?9 cxa1700aq/ar signal a signal k cxa1700 to be measured pb c lpf acc amp acc det acc ch hold pb c in swp v46 sw45 c32 100p sg46 (sg45) c out p63 45 46 63 p63 (pin 63 c out output) sg 46 (pin 46 swp input) signal a 10m sec 10m sec v 1 v 2 v 3 v 4 signal k signal a signal k sg45 (pin 45 pb c in input) 200mvp-p/743khz p8 (pin 8 rec c out output) sg53 (pin 53 ext cin input) v in min v in max v 0min v 0max f ac c = 20log v omax /v omin (4) high-speed acc compression ratio measurement measure the high-speed acc compression ratio in jog mode by inputting a modulation wave as shown below.
?0 cxa1700aq/ar bus decoder condition table for measuring electrical characteristics (blanks indicate low) test2 test1 sync off corre h shp throu ack off fbc l2 c sel dc2 dc1 c mute off pal camrec ps yd nclp2 nclp1 ncl2 ncl1 cfl2 cfl1 e fbc l1 jog edit ccir wccd mute video agc insel s pb h h h hh hh h h h hh h h hh hh h hh h h h hh h hh h hh h h h h h h h hh h h h hh hh h h hh h hh hh hh hh h h h hh hh h hh hh h mode condition a b c d e f g h j 1 j 2 j 3 j 4 k l 1 l 2 l 3 l 4 l 5 m n o p q r s 1 s 2 s 3 s 4 t u v 1 v 2 v 3 v 4 description composite rec 9video agc off) composite rec (video agc on) separate rec composite rec power save separate rec power save normal pb y comb out f characteristics y pre-emphasis characteristics pb y comb filter att level pb sharpness characteristics noise canceler frequency characteristics hi-8 demodulation characteristics c out level (rec) c out level (s/rec) acc, be, ce characteristics rec c measurement 9ntsc) rec c measurement (pal) rec afc pull-in range (ntsc) rec afc pull-in range (pal) pb c measurement high-speed acc compression ratio pb apc pull-in range (ntsc) pb apc pull-in range (pal)
?1 cxa1700aq/ar precautions concerning measurements (refer to electrical characteristics test circuit). 1. start measurements after making the following adjustments. 1) recording level (video agc) adjustment with the sw conditions (sw30: on) and the mode conditions: b the same as for measurement nos. 11 to 13, adjust v31 so that the p34 (pin 34 y out) output is 500mvp-p when signal b (100% white, 500mvp-p y signal) is input from sg30. 2) car adjustment (normal) with the sw conditions at the initial settings and the mode conditions: a, adjust v44 so that the frequency of the p39 (pin 39 y rf out) output is 4.2mhz. 3) chroma emphasis adjustment with the sw conditions (sw24-1, sw24-2, sw53: on), and the mode conditions: p the same as for measurement nos. 75 to 80, adjust v1 so that the signal level for the chroma interval of the p8 (pin 8 rec c out) output is at a minimum when signal l is input from sg24 and signal i is input from sg53. (chroma interval 3.58mhz/99.3mvp-p) 2. although no input conditions are indicated for c measurement nos. 71 to 117, signal l is input from sg24. unless otherwise specified in the input conditions, the frequency for sg24 is 15.734khz. 3. note that in regards to the measurements shown below, the characteristics change depending on the floating capacitance. 1) white/dark clipping level 2) pre-emphasis characteristics 3) rec apc pull-in range 4. when taking measurements, use metal film resistors with an allowable deviation of 1% for r1, r2, r3, and r5, and use temperature compensation ch types for c1, c2, c3, and c4.
?2 cxa1700aq/ar bus decoder 1) data contents 1 test2 h l 2 test1 h l 3 sync h off l 4 corre h h l 5 shp h thru l 6 ack off h l 7 f.b.c. l2 (feed back comb) 8 c sel h l test2 1) outputs vco out signal to bf vco (pin 62). 2) outputs white/dark-clipped y signal to y ref out (pin 39). normal test1 mode 1) cuts apc loop and inputs signal from cam fsc shp (pin 60) to vco out. 2) during rec, outputs burst emphasis output to rec c out (pin 8). 3) for the pb chroma feedback comb measurement, inputs signal from ext c in (pin 53) to the comb block without passing it through pb conv. normal sync separation does not operate. (external input to comp sync (pin 24) is possible). normal fixes the correlation pulse high so that there is always correlation. detects correlation. sharpness block through (does not pass through fsc trap, sharpness, lpf and eq) normal ack sw does not operate according to ack det; always fixed to color mode. ack operation is performed according to ack det. switches the feedback amount of the fbc (feedback comb). * refer to table 1. during recording, the signal input to ext c in (pin 53) is input directly to the acc amplifier. normal bit no. mode content 9 dc 2 (dark clip) 10 dc 1 11 c mute h off l 12 pal h l 13 cam rec h l 14 ps h (power save) l 15 yd h l the dark clipping level is switched as shown below. (when white clipping is 235% and wdc (pin 27) is left open) (unit: %) switches the amount of the dark clipping level offset to the white clipping level, which can be varied in steps of 10%. disables mute for the chroma signal by the mask signal. mutes the chroma signal by the mask signal. pal (chroma function) ntsc during recording, inputs fsc, locked to burst, from cam fsc shp (pin 60) without performing apc with the input chroma signal, and then performs frequency conversion using this fsc. recordable time can be reduced to 0.2 seconds or less from power saving mode with separate input. normal 1) s?s (31.s=low) changes to power saving mode with composite input. power consumption: 140mw (v cc =4.75v) 2) s?s (31.s=high) changes to power saving mode with separate input. power consumption:250mw (v cc =4.75v) normal performs yd playback during playback. normal high low high 85 95 low 105 115 dc 1 dc 2 bit no. mode content
?3 cxa1700aq/ar 16 nclp2 17 nclp1 18 ncl2 19 ncl1 20 cfl2 21 cfl1 22 e h l 23 f.b.c. l1 24 jog h l 25 edit h l 26 ccir h l 27 w ccd 28 mute h l during playback, switches the noise canceler characteristics. the typical value of pb y comb filter depth is switched as shown below. (low frequency: insignificant level input) hi-8 mode standard mode switches the feedback amount of the chroma feedback comb. * refer to table 1. 1) high-speed acc mode. 2) during playback, does not perform dropout compensation. normal edit mode 1) during recording, the chroma signal is y/c separated by the bpf only without passing though the comb filter. 2) during playback, cuts the feedback loop of chroma feedback comb. 3) during playback, makes the sharpness characteristics flat. normal for fsc = 4.43mhz for fsc = 3.58mhz fix to low. 1) mutes the y and chroma signals. 2) discharges the charge in the external clamp capacitance for vin1 (pin 30) and vin2 (pin 28) and in the external capacitance for agc tc1 (pin 29). normal bit no. mode content 29 video agc h l 30 insel h (input l selection) 31 s h l 32 pb h l video agc on video agc off selects vin2 (pin 28) input. selects vin1 (pin 30) input. for separate signals during recording. for composite signals during recording. playback mode recording mode bit no. mode content high low high ?0db ?db low ?.5db 0db cfl1 cfl2 table 1. chroma feedback comb loop gain f.b.cl1 low high f.b.c low 0db +1.9db l2 high +4.8db +6.7db
?4 cxa1700aq/ar 2) timing chart 3) input conditions pin 49 ck (clock) pin 47cs (chip select) for cxa1700a data latch over 2 s over 2 s pin 48 si (signal in) 1234567891011121314151617181920212223242526272829303132 input high level for pins 47, 48, and 49 input low level for pins 47, 48, and 49 clock frequency setup time hold tie cs fall time to si start time final ck rise time to cs rise time v b-h 2.0 v v b-l 1.0 v f ck 1.3 mhz t su 400 nsec t hld 400 nsec t 1 2 ?ec t 2 2 ?ec item symbol min. typ. max. unit
?5 cxa1700aq/ar bus decoder mode condition table (ntsc) note don't care " * ". in addition, select for the blank shp thru column based on the system configuration; for other blanks according to the characteristics. test2 test1 sync off corre h shp throu ack off fbc l2 c sel dc2 dc1 c mute off pal camrec ps yd nclp2 camera vtr stand-by rec edit search rec pb s rca normal pb edit standard standard standard standard standard hi-8 standard hi-8 standard sp lp sp lp sp lp sp lp llll l * l llhhl* llll l * l llhll* llll l * l ** lllll llll l * l lllll* llll l * l lllll* llll l *** lllll llll l *** lllll llll l *** lllll llll l *** lllll llll l **** lllll llll l **** lllll llll l **** lllll llll l **** lllll nclp1 ncl2 ncl1 cfl2 cfl1 e fbcl1 jog edit ccir wccd mute video agc insel s pb camera vtr stand-by rec edit search rec pb s rca normal pb edit standard standard standard standard standard hi-8 standard hi-8 standard sp lp sp lp sp lp sp lp ***** l * lllllhhhl ***** l * lllllhhhl l * hhl l l *** h ***** l * lllllhhhl ***** l * lllllhlll h lllll *** h h lllll *** h l lllll *** h l lllll *** h h * lhlll *** h h * lhlll *** h l * lhlll *** h l * lhlll *** h
?6 cxa1700aq/ar description of operation 1. signal path during composite recording composite signals input from vin1 (pin 30) and vin2 (pin 28) are selected by mode insel, passed through the video agc, and y/c separated by the comb filter. the y signal is output to y comb out (pin 14). next, level adjustment is performed externally and then the signal is input to emph in (pin 5), after which hard clipping, emphasis, white/dark clipping, and fm modulation are performed and then the signal is output from y rf out (pin 39). in addition, the y out (pin 39). in addition, the y out (pin 34) signal is input to y in (pin 32), and then the monitor signal is output from video out (pin 36). on the other hand, y/c-separated c signal passes through the bpf and then along with being output to c out (pin 63), the signal is also passed through acc, chroma emphasis, and burst emphasis, low frequency converted, is passed though a lpf and then output from rec c out (pin 8). li m mod y rf out smear devi carr w/d clip main emph hard clip clp eq trap lpf vca eq shp trap eq clp sync sep clp mute dds video agc clp clp clp ccd lpf eq. emph in y comb out dlin1 dlout1 vin1 vin2 y out y in v ide o out burst emph c in c out ext c in bpf acc chro ma emph rec co nv rec clpf ack sw rec c out compsync sub emph + + + + + + + + 39 5 14 21 23 24 30 28 34 32 36 64 63 53 8 pin no. 28 30 34 32 23 21 signal waveform 36 14 5 0.5vp-p 2.0vp-p 0.5vp-p 0.5vp-p 0.32vp-p 0.3vp-p 39 63 8
?7 cxa1700aq/ar 2. signal path during playback the playback y rf signal, after having passed though rf agc and a soft limiter, is input to y rf in (pin 41). after fm demodulation, the signal passes through the lpf and is then output from demod out (pin 7). after the waveform is formed and the level is adjusted by an external eq and peaking amplifier, the signal is input to de emph in (pin 10), after which clipping compensation, de-emphasis and hhs cancellation are performed. next, cross talk cancellation is performed by a comb filter and then the signal is output from y comb out (pin 14). after the waveform is formed and the level is adjusted by an external eq (lpf) and peaking amplifier, the signal is input to 5 emph in, where it passes through a noise canceler and is then output from y out (pin 34). on the other hand, the playback rf signal, after passing through afm and atf trap, is input to pbc in (pin 45), after which the low-frequency c signal is separated by the pbc lpf. next, the playback c signal, which has undergone level control by the acc and frequency conversion by pb conv and pbc bpf, is subjected to cross talk cancellation by the comb filter, and then after undergoing burst de-emphasis and chroma de-emphasis, the signal is output from c out (pin 63). by inputting the playback y signal (y out (pin 34) output) to y in (pin 32) and the playback c signal c(c out (pin 63) output) to c in (pin 64), the y/c mixed signal is output from video out (pin 36). dds mute hpf fsc trap eq a tt vca eq shp hhs cancel main deem cli p comp hpf eq peaking hpf a tt ccd lpf eq vca bpf burst deem chro ma deem ack sw clp li m clp lpf eq peaking clp li m lpf a tt clp y out y in video out emph in nctc in y comb out c out c in comp tc deemph in demod out yrf in pbc in c trap dl in 1 dl out 1 clp sub deem trap dl out 2 + + + + + + + + + + + + 36 32 34 5 6 64 63 19 21 23 12 45 41 7 10 9 14 pbc lpf acc pb co nv pbc bpf lpf demod li m pin no. 41 signal waveform aa aa 7 10 14 5 34 32 45 12 63 64 23 21 19 ; 0.5vp-p 36 ; 2vp-p 23 21 19 36 0.2vp-p 0.17vp-p 0.5vp-p 0.5vp-p 0.3vp-p 0.3vp-p
?8 cxa1700aq/ar 3. rec level adjustment the video signal input to vin1 (pin 30) and vin2 (pin 28) is selected by mode insel, and when mode video agc is high, the signal is passed through sync agc and peak agc and then is output from y out (pin 34). the output level can be adjusted by applying an external dc bias (1.3 to 2.6v [vcc = 4.75v]) to recl/jvd (pin 31). in the case of white 100%, 500mvp-p input, the following are the standard characteristics. 4. mask dds dds/mask (pin 26) is the vow (character level) signal and the vob (character background) and masking timing pulse input pin. the threshold value for source signal and vob/masking is 1.1v, and the threshold value for vob/masking and vow is 2.0v (when vcc = 4.75v). in addition, the vow replacement signal level can be varied within the range of the dc level (2.3v to 3.0v) for this pin; those standard characteristics are shown below. 3.0 400 1.0 500 600 (mvp-p) 1.5 2.0 2.5 y out (pin 34) output level rec l/jvd (pin 31) control dc (v) 3.0 60 2.0 80 100 (%) 2.5 ( v cc =4.75v) mask/dds (pin 26) dc level y out (pin 34) replacement signal luminance level
?9 cxa1700aq/ar 5. white/dark clipping adjustment the white/dark clipping levels can be varied connectedly using the dc level of wdc (pin 27). in addition, the dark clipping level is switched independently by dc1 and dc2 of the mode. the standard characteristics of y pre-emphasis are shown below. (when white 100%, 500mvp-p input to pin 5 emph in) y rf out (pin 39) white/dark clipping level (mode test 2: high) 2.4 ?00 2.6 0 200 (%) 2.5 (v g1 =2.05v) 100 100% (dc1, dc2) (h, h) (l, h) (h, l) (l, l) when open wdc dc (pin 27) level (v) white clip level dark clip level
?0 cxa1700aq/ar 6. carrier/deviation adjustment the y fm modulation carrier frequency is adjusted by applying an external dc bias to carr cont (pin 44). when carrier adjustment is performed, gm1 and gm2, the deviation/smear gain, change in proportion to ixcar at the same time. this results in the fm modulator sensitivity being roughly adjusted for the dev in/sme in signal level. fine adjustment of the deviation frequency is accomplished by the dc bias applied to dev cont (pin 43). carr cont yrfout i xc ar carr cont fm mod lim i xd ev i xsme dev in sme in smear cont dev cont dev cont smear cont g m1 gm1=k 1 i xd ev g m2 gm2=k 2 i xsme 43 42 39 44
?1 cxa1700aq/ar 6-1. carrier frequency adjustment the standard characteristics of carrier frequency for the carr cont (pin 44) dc bias (1.8v to vcc) when bias was applied to emph in (pin 5) with vg1 are shown below. 6-2. deviation frequency adjustment the standard characteristics of deviation frequency for the dev cont (pin 43) dc bias (1.8v to vcc) when bias was applied to emph in (pin 5) with vg1 + 0.5v after carrier frequency adjustment are shown below. 5 3 1 4 5 (mhz) 23 4 (v cc =4.75v) carr cont (pin 44) dc level (v) y rf out (pin 39) carrier frequency dev cont (pin 44) dc level (v) y rf out (pin 39) deviation frequency 5 1.0 1 2.0 (mhz) 23 4 (v cc =4.75v) 1.5
?2 cxa1700aq/ar 7. chroma emphasis fo adjustment the center frequency of the chroma emphasis characteristics is adjusted by the dc bias (1.8v to 3.8v [vcc = 4.75v]) applied to ce cont (pin 1). the standard characteristics of center frequency for the ce cont (pin 1) dc level are shown below. 8. acc/ack standard characteristics rec c out (pin 8) (mode test 1: high) /chroma emphasis fo 4 ?00k 2 +100k (hz) 3 (v cc =4.75v) fsc ce cont (pin 1) dc level (v) ext c in (pin 53) input level 10 ?0 ?0 0 (db) 0 (143mvp-p=0db) ? ?0 ?0 ack off rec c out (pin 8) output level (0db output for 143mv input) ack on
?3 cxa1700aq/ar 9. y cross talk cancellation de-emphasized playback y signal is input to the comb block. by passing the differential component of the nh signal and the (n+1)h signal through the limiter, the cross talk component, which is line noncorrelation, is extracted. cross talk cancellation is accomplished by subtracting this cross talk component from the nh playback y signal. in addition, by switching mode cfl1 and cfl2, the comb depth characteristics of pby cross talk cancellation can be changed . the standard characteristics of comb depth for low frequency (approximately 1mhz) and insignificant input level (main emph tc (pin 3) 7.9mvp-p = ?0db) input are shown below. ccd lpf eq dl out2 dl in1 trap lim att clamp2 vca2 eq cfl1 cfl2 out doc trap playback y playback c c comb + ++ + 23 19 pb y comb depth 64 h 65 h cfl1 high low cfl2 high ?0db ?db low ?.5db 0db
?4 cxa1700aq/ar 10. pb c cross talk cancellation the playback c signal which passes through the bpf is input after frequency conversion. the feedback chroma comb filter is configured as shown above. by switching mode fbcl1 and fbcl2, the feedback loop gain from the y comb is changed as shown below. feedback loop gain when the feedback loop gain is increased the s/n ratio can be improved, but note that color smear in the vertical direction and transient response get worse. ccd lpf eq att clamp1 vca1 hpf fbcl1 fbcl2 out nocorre + edit + bf ack ?bf dl out1 dl in1 playback c signal playback y c comb y comb 21 23 + + + + + + 227 h 228 h feedback loop gain is large during editing fbcl1 high low fbcl2 high 6.7db 4.8db low 1.9db 0db
?5 cxa1700aq/ar 11. pb y noise cancellation when an external hpf is configured as shown below, the standard characteristics of pb y noise cancellation are as shown below, depending on the switching of input signal level, mode ncl1/2, external hpf and nclp1/2. 1) changes in frequency characteristics due to the input level clp mute dds emph in clp lim lpf att nc tc in c 1k vgi 2.37v 500mvp-p =0db nclp1 nclp2 ncl1 ncl2 + + 5 6 11 34 y out (pin 34)/emph in (pin 5) i/o gain 0 ? 10k ?db 100k 1m 10m (db) ? ? ? ?0db input frequency (hz) ?0db ?0db ncl 1, 2 = h, h nclp 1, 2 = h, h external hpf (1k w /82pf)
?6 cxa1700aq/ar 2) changes in frequency characteristics due to switching of mode ncl1/2 3) changes in frequency characteristics due to switching of external hpf and mode nclp1,2 0 ? 10k l, l 100k 1m 10m (db) ? ? ? h, l h, h l, h y out (pin 34)/emph in (pin 5) i/o gain input frequency (hz) nclp 1, 2 = h, h external hpf (1k w /82pf) external hpf 1k w /220pf 1k w /220pf 1k w /82pf 1k w /82pf 0 ? 10k 100k 1m 10m (db) ? ? ? nclp1 l h l h nclp2 l l h h y out (pin 34)/emph in (pin 5) i/o gain input frequency (hz) 1 3 4 2 1 3 4 2 ncl 1, 2 = h, h the following four conditions are compared:
?7 cxa1700aq/ar 12. bf out pulse the timing for c sync (pin 24) output pulse and bf vco (pin 62) output pulse changes in each mode as shown below. note that the bpf delay time between c out (pin 63) and c in (pin 64) during pal playback is designed to be 200ns. in addition, the bf pulse width w dbf is constant. tdbf wdbf pb ntsc ?rec pal rec : tdbf (pb) : tdbf (pb) + 250nsec : tdbf (pb) + 390nsec
?8 cxa1700aq/ar adjustment procedure (refer to application circuit.) 1. rec y level adjustment mode : rec, 29 video agc = high input signal : color bar 500mvp-p (pin 30 v in1) adjustment method : when video out (pin 36) is terminated with 75 , adjust rv105 (ee level) so that the output is 1vp-p. 2. y/c separation adjustment mode: rec, 5 shp thru = high input signal : color bar 500mvp-p (pin 30 v in1) adjustment method : adjust rv110 (yc.sep) ? rv103 (comb.adj) ? rv110 (yc.sep) in turn so that the residual chroma component at y comb out (pin 14) is minimum. 3. emphasis input y level adjustment mode : rec input signal : color bar 500mvp-p (pin 30 v in1) adjustment method : adjust rv112 (emph.y.lev) so that the y signal level at emph in (pin 5) is 500mvp-p. 4. y-fm carrier deviation adjustment mode : rec, 22 e = low (standard mode) input signal : 100% white, 500mvp-p (pin 30 v in1) adjustment method : while monitoring the y rf out (pin 39) signal with a spectrum analyzer, adjust rv108 (carr) so that the h sync spectrum (carrier) is 4.2mhz in standard mode, and adjust rv107 (dev) so that the 100% white y level spectrum is 5.4mhz in standard mode. 5. chroma emphasis fo adjustment mode : rec, 2 test1 = high input signal : color bar 500mvp-p (pin 30v in1) adjustment method : adjust rv102 (cemph) so that the level of the flat portion of the chroma signal after burst emphasis output to rec c out (pin 8) is minimum. 6. pb y level 1 adjustment mode : pb input signals : pb y rf 200 =mvp-p (pin 41 y rf in) adjustment method : adjust rv111 (pb.y.lev1) so that dl in 1 (pin 23) y signal level is 500mvp-p. 7. pb y level 2 adjustment mode : pb input signal : pb y rf 200mvp-p (pin 41 y rf in) adjustment method : when video out (pin 36) is terminated with 75 , adjust rv113 (pb.y.lev2) so that the output is 1vp-p. note on operation connect nc (pin 17) to gnd directly. i ref (pin 55) resistance 18k, determines the reference current. employ a metallic film resistance and of allowable difference ?%.
?9 cxa1700aq/ar application circuit (ntsc normal) c 39 c205 c110 r131 1k 1k r111 r102 10k 220 c104 d ev lpf rf agc ctrap soft limiter afm trap atf trap y buffer c buffer l201 10 c204 3.3 0.01 c206 3.3 c207 0.01 r202 82k 1k r203 c208 0.1 l202 10 c209 3.3 c210 0.01 c211 0.01 r v110 yc sep r115 r116 r112 39 r113 39 r v105 47k r110 47k c111 10 39 c113 10 r114 39 0.47 c112 0.47 c114 0.47 r120 c115 10 c116 0.01 c117 10 c119 3.3 c118 10 c120 10 c121 3.3 c201 1 r201 1m c202 0.01 c203 10 c130 10 rv103 47k c131 0.01 c133 0.01 c132 10 c134 10 c135 47 c136 470p r130 1k 1k r132 c137 220p c138 0.47 r113 3300 r134 470 c139 330p c140 390p r135 1.2k c150 1000p r v102 47k c151 0.01 r v120 47 k c152 10 c153 0.01 c155 82p c154 0.01 l150 r150 18k c157 1000p c156 1 r151 r152 r153 5600 c158 0.68 c159 0.022 r154 6800 c160 c161 1 330p r101 10k r103 10k rv108 47k r156 c101 0.01 c102 10 l101 47 c105 0.22 r106 68 r104 1k r105 c103 4.7 c emph sh p xt al comb adj r v113 r v112 r v111 d111 d110 ccd out lpf y/c sep eq pb y eq demod out eq reg 4.75v gnd c syn c dds mask jog vd rec y rf rec c rf pb r f hchg va sw p cs si ck dop cam fsc vid eo in y sin c y sou t video out pb cxl5502 ee l evel cxa 1700a r carr c106 100p pb y l ev1 pb y l ev2 emph y l ev r155 rv107 47k 24 23 22 21 20 19 18 17 31 30 29 28 27 26 32 25 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 64 63 62 61 16 15 14 9 11 12 13 8 7 6 5 4 3 2 1 10 7 6 5 4 3 2 1 14 9 11 12 13 8 10 vss ab v dd vcoin pcout v dd cl k sigin i/01 i/02 out vss vss vcoout 39 22 rec application circuits shown are typical examples illustrating the operation of the devices. sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party and other right due to same.
?0 cxa1700aq/ar application circuit (pal normal) r v120 4.7 r130 0.47 39 reg 4.75v r v113 b e llfl pbcin fb /jog secamin ga ina dj fs c in so apclp cout 16 15 14 13 23 22 21 20 19 18 17 9 11 12 8 7 6 5 4 3 2 1 10 rf agc ctrap soft limiter afm trap atf trap y buffer c buffer r102 10k r101 10k r103 10k rv108 47k c101 0.01 c102 10 l101 47 c105 0.22 r106 68 r104 1k r105 1k c104 220 c103 c160 c151 0.01 47 k c152 10 c153 0.01 r150 18k c157 1000p c156 1 r151 r152 39 r153 c158 0.68 c159 0.022 r154 3900 c161 1 6800p sh p xt al c150 1000p r v102 47k c emph c130 10 rv103 47k c131 0.01 c133 0.01 c132 10 c134 10 c135 47 c136 470p 1k r131 1k r132 1k c137 220p c138 r133 3300 r134 470 c139 330p c140 390p r135 1.2k comb adj r122 39 r113 39 r v105 47k r110 47k c111 10 r112 39 c113 10 r114 39 r120 c110 0.47 c112 0.47 c114 0.47 c115 10 c116 0.01 c117 10 c119 3.3 c118 10 c120 10 c121 3.3 c201 1 r201 1m c202 0.01 c212 10 10k jog l201 10 c204 3.3 c205 0.01 c206 3.3 c207 0.01 r202 r203 c208 0.1 l202 c209 3.3 c210 0.01 c211 0.01 r v112 r v113 pb y eq eq ccd out lpf r v111 ccd out lpf y/c sep eq r115 r116 d111 d110 d112 d113 gnd c syn c dds rec y rf rec c rf pb r f hchg cs dop cam fsc vid eo in cy sin cy sou t video out c301 0.01 c302 10 pb 4.75v jog hd dop c303 110p c304 1000p r301 8200 c305 2.2 r302 6800 c307 390p r303 3300 c306 330p c310 0.01 r v 114 1k r312 100k r311 100k r310 100k d301 jog r313 2200 5600 rec pb demod out eq bpf pb 4.75v b. ph a ad j ph a ad j v cc 82k 120 rec pb yc sep c213 10 emph y l ev pb y l ev2 pb y l ev1 cxa1203 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 24 23 22 21 20 19 18 17 31 30 29 28 27 26 32 25 49 50 51 52 53 54 55 56 57 58 59 60 64 63 62 61 16 15 14 9 11 13 8 7 6 4 3 2 1 10 lpf cxa 1700a r carr c106 100p ee l evel cxl1506 c314 4.7 c313 0.01 r316 100k c312 1000p r315 4700 rv 115 10k r317 4700 r314 100k c311 0.01 d ev r156 r155 rv107 47k mask jog vd 1 9 23 78 6 5 4 15 14 10 11 12 13 16 va sw p si ck 12 5 nhkc dlop secjump seclpf afsel hd csync gnd 24 s igin vg1 vg2 1h vss 2h vcout vss vdd vss ab v dd v coin pcout vss clk vreg ir phase adj r111 10 pbcin secack 1/2fh application circuits shown are typical examples illustrating the operation of the devices. sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party and other right due to same.
sony code eiaj code jedec code 23.9??.4 20.0?.1 1.0 0.4 ?0.1 + 0.15 14.00.1 1 19 20 32 33 51 52 64 0.15 ?0.05 + 0.1 2.75 ?0.15 16.3 0.1 ?0.05 + 0.2 0.8 0.2 m 0.12 0.15 +?.4 17.9??.4 +0.4 + 0.35 64pin qfp(plastic) qfp?4p?01 * qfp064??420 package material lead treatment lead material package weight epoxy resin solder/palladium copper /42 alloy package structure plating 1.5g sony code eiaj code jedec code package material lead treatment lead material package weight epoxy / phenol resin solder plating 42 alloy package structure 12.0 0.2 * 10.0 0.1 (0.22) 0.18 ?0.03 + 0.08 0.5 0.08 1 16 17 32 33 48 49 64 0.5 0.2 (11.0) 0.127 ?0.02 + 0.05 a 1.5 ?0.1 + 0.2 0.1 0.1 0.5 0.2 0?to 10 64pin lqfp (plastic) lqfp-64p-l01 * qfp064-p-1010-a 0.3g detail a 0.1 note: dimension * ?does not include mold protrusion. package outline unit : mm cxa1700aq cxa1700ar cxa1700aq/ar ?1


▲Up To Search▲   

 
Price & Availability of CXA1700AQAR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X